
Department of Mechanical and Mechatronics Engineering

MTE 201 – Term Project

Lego Block Measuring Device

Instructor:
Peter Teertstra

Armaan Sengupta 20991907

Armaan Rasheed 20993642

Aarush Jain 21024818

Andy Zhang 21006293

November 13th, 2023



Overall Design:

Summary:
Our measurement system measures linear distance by converting rotary motion measured via
an encoder to linear distance. In this case, the sensor is the rotary encoder, the signal
modification system is the microcontroller the encoder is connected to, and the indicator is an
LCD screen controlled by the microcontroller. The device has several auxiliary features that
don't directly assist with the measurement itself, but make the project more practical in the
scenario it was developed for automated factory tolerance inspection. Our team designed the
measurement system to be used in an industrial automation line to perform quality assurance
validation on parts without human interference, this is described throughout the remainder of
this document.

Theory of operation

Figure 1: a flowchart describing the theory of operation of the general procedure



t
Above a flow chart for the system's operating procedure can be seen.

Assumptions:
1. The LEGO block is going to be hand-placed onto the rotational plate
2. The machine has to be manually turned on from the V5 GUI
3. For very long components that need length to be measured, the user would place

the object length-wise as it’s common sense
4. For multiple objects, the platform is not used and the user would orient however

they want

Mechanical:

Figure 2: isometric view of the machine assembly

The overall design of the machine has 2 main systems, a linear motion system and a rotating
platform system. This stemmed from brainstorming ideas to make a “vice” based measurement
machine applicable from an engineering point of view. Adding the ability to rotate and measure
a singular part allows for automation in the production line. Composed of mainly 3D printed PLA
components, and using the VEX V5 Ecosystem, it allowed us to bypass the electronic scope of
the project and focus on making the mechanical measuring systems and the software
associated. Two days of quick CADing resulted in this final design, and leveraging the 3D
printers owned by group members, all the necessary pieces were manufactured within a day. A
lot of considerations went into tolerances, with the primary goal to keep it as tight as possible to
improve accuracy when measuring. This resulted in a few redesigns and re-prints since all the
pieces were very tight fitting. The whole machine is assembled using common M3 hardware and
VEX-based imperial standard screws.



Linear Motion System:

Figure 3: view of the linear rails and rotary encoder

Using a linear motion rail as the base of the design and with the constraint of the rotating
platform, this is the final iteration of the motion system. Using only one rail on one side and a
rack and pinion on the other, this unconventional design allowed us to minimize design
complexity and allow the functionality of a rotating platform that won’t interfere with the motor
carriage.

Rotational System:

Figure 4: view of the rotational plate and servo attached to it

To make a clean, hidden rotating platform, a cutout was made into one of the ends of the
vice-based machine and allowed a simple spur gear system to be integrated. Playing around



with the design allowed the gear disk to be self-supporting and the gear to be fully hidden within
the end plate. Originally, the motor was to be placed right below the platform to allow ease of
implementation but that caused clearance issues with the linear carriage. Thus the gear system
was chosen in favor because of its external placement. This system utilized customs gears of 55
and 90 teeth and was designed using a spur generator.

Camera Vision Mount:

Figure 5: Long stem protruding from assembly shows camera mount for CV

The camera mount was designed considering the field of view of the camera and basic
trigonometry was used to determine the height required for the entire rotating platform to be
within view. A simple elevated rod with a counterbored hole to mount the camera via a single
M6 screw was added to ensure the camera's position did not deviate and fine-tuning regarding
(more details in software) could remain consistent.



Embedded Software:

Collision Detection:

Figure 6: shows the communication protocol used for three-wire communication

Collision detection is quintessential to the operating of the system as it is required both for the
homing of the system (determining a reference frame of zero distance) as well as measuring the
length of the object. This is because we are not using any kind of limit switch which might have
introduced further variability in the measurement of objects, and would have limited the size of
objects we can measure. Thus we choose to utilize a method that would not require the external
sensor to contact the object itself. By directly measuring the current that the motor draws we can
detect a current spike, which indicates a sudden change in torque of the motor due to additional
resistance; this can be attributed to colliding with an object. By running various trials we
determined a threshold which separated normal operating conditions and object collision with
100% accuracy (over 45 trials). This technique was then used to implement “homing” the
system, which involved it detecting a collision between the sliding plate and the fixed back plate
to determine a datum of zero distance, as well as during each measurement to detect collision
between the sliding back plate and the object.



Communication protocol:

Figure 7: serial plotter describing the serial exchange between ESP32 and V5 Brain

The VEX V5 brain is required to receive data from a PC regarding what angle it should rotate
the object to (the PC is using computer vision to determine this, more on this below). However,
because the VEX V5 brain uses proprietary software and firmware, standard communication
protocols like UART, I2C, SPI, etc… are not available on the brain. The only thing that was
available was the ability to read a wire as being a digital high, or digital low (0 or 1). Based on
this our team worked on creating a custom communication protocol such that an ESP32 could
be used as a middleman to wirelessly receive data from the PC and then send that data over 2
wires to the brain using our custom uni-directional, peer-to-peer, communication protocol, which
was loosely inspired by I2C, carrying over the concept of a clock and signal line. We began by
converting our angle into binary, and then transmitting it using our communication protocol
(90-degree angle shown in the image above) to the brain, and then decoding this signal back
into motor encoder ticks for the turntable motor to rotate the object to the correct orientation.
There were several challenges, and innovations made regarding this custom communication
protocol, though the details are out of the scope of this project. The result however is the system
is able to receive an angle input from a PC wirelessly thereby being able to rotate an object to
its correct orientation.



User Interface:

Figure 8: GUI on the V5 Brain to start and stop

A user interface was added to control the machine. A basic button and message object were
created and reused that took advantage of the brain’s capacitive touchscreen interface. While
this interface was limited in what kinds of graphics could be displayed, it was sufficient for us to
be able to effectively switch between all the operating modes of the system as shown in the flow
chart above. Everything was written from scratch, including pixel rendering for objects and
determining if objects were clicked using cartesian coordinates of touch inputs and
corresponding saved object locations.

Computer Vision:
In order to place the Lego block in the correct orientation for the encoder to start measuring its
distance, computer vision software was developed with the help of the OpenCV library to help
identify the placement of a Lego block and then compute the angle the block is positioned with
respect to the horizontal axis in the camera’s frame of reference. The process is fairly simple
and straightforward and begins with the camera positioned directly above the base plate looking
down as part of a bird’s eye view and operating on a live feed. The current algorithm running
through the master computer is waiting to detect any non-moving rectangular objects that will
come into focus. After a block is slid under the focus of the camera and comes to a complete



stop, the camera is able to detect this using object detection functions such as applying
Gaussian and gray filters and then computing the contours to detect shapes. After the software
is able to detect the block, it writes the frame at that exact moment to a JPG file and then stores
it in its current working directory.

Figure 9: A sample demonstration of the angle of rotation computation of a phone acting as a

block

After this process, the software proceeds to compute the angle the block makes with the
horizontal axis with respect to the camera’s frame of reference. The OpenCV script first converts
the frame to a binary representation via a threshold function and then proceeds to find all the
contours. It then iterates over all the contours calculated and calculates the area under each
contour while simultaneously removing contours that are either too large or too small. After
drawing each approved contour on the frame, the orientation is computed using a method called
Principal Component Analysis where the data points of each contour are stored in a 2D array
and computes the mean, eigenvectors, and eigenvalues of each set of points using the built-in
PCACompute function. Afterwards, the program determines the two directions (eigenvectors)
where the eigenvalues are highest, alluding to the highest variance of data. Afterwards, the
program computes the angle between the two largest eigenvectors and stores it in a global



variable which is sent to the ESP32 microcontroller board via WebSocket for further processing
and rotation.

Networking Architecture:
The design choice behind picking an ESP32 was the ability to use its WiFi capabilities to our
advantage. It was configured to be a soft access point so that devices could connect to the
ESP32 on a local area network. The backbone of our data acquisition system comprises an
OpenCV script and server.py script which produced and forwarded an angle value to the
ESP32. Once the ESP32 had recognized the laptop hosting the computer vision as a client
within its network, it would receive an angle value from the scripts and store it onboard the
ESP32. Next, the ESP32 would serially communicate with the V5 brain to convert this angle
value into a servo value which would orient the LEGO block at the correct angle and prepare it
for pushing. Furthermore, the ESP32 when acting as a soft access-point uses basic HTTP
protocol to communicate with the laptop over the hosted server!

Calibration/Analysis:

Calibration Data & Calibration Curve
The calibration procedure consists of the mid-plate pushing all the way to the CV mount and
zeroing at this position. Once it has reached this position, it will start going backwards till it
reaches a calibration distance of 108mm at which point it will stop. The machine is now
calibrated and ready for use. Data was recorded on how many times the encoder rotated versus
the real distance measured using a digital caliper as can be seen in the table below

Table 1: Calibration Data
Degrees (Measurement
System Output) (mm)

Caliper Reading (Real Value)
(mm)

176 7.59

265 14.42

352 22.55

444 30.13

482 34.44

523 38.66

571 40.52

630 47.69

704 53.96

832 65.16



860 67.35

926 73.25

1003 79.87

1061 85.28

1033 82.3

465 32.14

567 39.65

789 58.94

980 76.65

1009 79.95

This data can then be plotted to yield Figure 10

Figure 10: graph displaying caliper reading vs degrees for experimental data

Based on this, and our knowledge that the relationship between the two values is linear, a line of
best fit can be used to model the data. We can see that there is an offset value (non-zero b
term), which does not quite make sense because we know that an angle of zero degrees means
zero inches. This is a result of inaccuracy within the data.

We can now plot the deviation for each distance to get Figure 11



Figure 11: Deviation VS True Measurement

The estimate of the maximum uncertainty value is 1.8442mm based on the maximum deviation
recorded between all the trials as can be seen on the graph above.

Evidence of systematic and random errors
The fact that we have an offset of 8.49mm, meaning that the calibration equation thinks zero
degrees is -8.49mm is evidence of systematic error in either our instrument itself or, in the
method we used to gather the “real” data. Random error is minimal as indicated by a R2 value of
0.999 meaning the random variation within data samples was low enough to be approximately
linearly, and since we expected a linear relationship, it stands to reason that the precision of the
device is high even if the accuracy might not be.

Conclusion:
Reflecting on the overall design of the machine, there were many improvements that we could
make to improve accuracy, user experience and functionality. The mechanical components were
made of plastic, which is flexible and would create inaccuracy if there were any loading forces
during operation. It would introduce deformations and skew the real measurement. Ideally, all
the parts should be metal, and the mid plate that moves should have 2 linear rails; one at each
end. In addition, having a sensor to detect collision would also greatly increase the accuracy, as



the system no longer relies on when the motor detects a current spike from hitting the object.
This allows the system to stop more accurately.

For the firmware that controls the machine, it was simple and had no major issues that affected
performance. If given more time, the user interface could use an overhaul and be designed to
look more modern and similar to production line machines. Since our goal was to make a very
applicable device, we wanted to have lots of opportunities to implement more functionality via
software. This resulted in us running into a lot of issues, finding alternatives and scrapping
features. The problem with using serial communication between a microcontroller and a
computer for our use case was that we needed multiple files communication over the same
“COM4” PORT. For example, the server.py script will be sending an angle value to the ESP32
over the COM4 PORT and then, the ESP32 would be using the same COM4 PORT to transmit
information to the VEX-V5 brain. This is not possible due to the port already being busy
because of the communication between the ESP32 and server.py script. Hence why, we opted
to make the ESP32 a soft-access point for all devices except the V5 brain. In addition, we
planned lots of features that could be very useful when implemented properly. If more time was
given, we wanted to have a system that would be able to utilize the CV camera to recognize the
sides of an object and project its measured dimensions onto a snapshot. This is a simple
concept, but it could prove to be useful if this feature is implemented in a phone and caliper for
example.

Overall, the project was a good learning opportunity for mechanical and software design, it
challenged the group to design an applicable engineering device within the scope of the project.
The timeline of the project also challenged everyone’s ability to work in parallel to design,
manufacture, assemble, and program the device. It also allowed the group to explore and use
the 3rd year mechatronics design studio and get familiar with their equipment, which is definitely
helpful for future courses.


